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SUMMARY

n 3679

A number of structurai and aerodynamic
concepts for centrifugally deployed variable geom-
etry atmospheric entry aids are discussed. These
include means for controlling apex angle of cen-
trifugally stabilized conical flight bodies, the con-
cept of isothermal flight, i.e., atmospheric entry
at constant surface temperature, and analytical
design of optimum rotor blade structures. Ma-

PART1

terials for fiexible rotor construction are reviewed
and classified according to a temperature-strength
parameter that is characteristic for the intended
application. Several aerodynamic rotor models
subject to qualitative tests are described. An ap-
plication of the entry rotor concept to a Mars and
Earth landing capsule is presented in the form of a
conceptual design configuration.

PART II

Expressions for the aerodynamic forces ona
rotor blade element are developed using the New-
tonian momentum concept and are applied to the
problem of producing lift as well as drag during
atmospheric entry. The relative merits of cyclic
blade pitch, cyclic changes in effective blade area,
and tip flapping vanes as trim control devices in
lifting flight are discussed.

Lateral stability in axial flight is investigated

using rotor derivatives evaluated from a consid-
eration of the dynamic equations of a flapping rotor
blade with offset flap hinge. The effects of large
coning angles and rotor cross-derivatives are
included. Calculations for points along typical re-
entry trajectories indicate that a rotary wing re-
entry vehicle possesses an inherent tendency
toward a mild instability similar to that of hovering
subsonic helicopter. Means for eliminating the
instability are discussed.




PART | |
CONCEPTS OF ROTARY WING ATMOSPHERIC ENTRY

Introduction

Atmospheric entry and planetary landing of
spacecraft are usually considered in view of fixed
geometry flight configurations, and of vehicles
with relatively high (>>1 psf) ''ballistic param-
eters' (Ref. 1}). These configurations have
emerged from development of ballistic missiles
which, in many respects, are the forerunners of
the current generation of space vehicles.

In recent years, several studies of deploy-
able and variable geometry configurations have
been conducted, including inflatable wings, para-
gliders, variable drag brakes and ''rotochutes"
{Ref. 2-5). These allow the deployment of rela-
tively large and lightweight lift and drag surfaces
for aerodynamic control of atmospheric entry
without being limited by the requirements for com-
pactness which are imposed by the available boost-
er payload compartment size.

Several operational advantages can be derived
from deployable and variable geometry configura-
tions:

— The possibility of low ballistic parameters
(< 1psf) materially reduces heating rates
and prolongs flight time, thus it simplifies
both heat protection and flight path control
aspects of manned atmospheric entry.

- The concept of a variable geometry con-
figuration adds a means of control for
selection of survivable entry trajectories
from those initial entry conditions (hyper-
bolic velocities and steep entry angles)
which would be catastrophic for fixed
geometry vehicles.

Studies of variable geometry and filamentary
structures in space operations (Ref. 6-8) indicate
the merits of centrifugal stabilization mechanisms
for deployable surface structures.

This first portion of the paper summarizes
some of the aerodynamic and structural concepts
that have been developed in the course of an initial,
exploratory study of rotary atmospheric entry aids.

A, Vax:iable Geometry Rotors

The basic configuration selected for study is
that of a circular cone with variable apex angle,
rotating about its axis. This configuration is rela-
tively simple in its aerodynamic and structural
cRaracteristics. The structure is considered to be
made from thin, flexible material, resistant only
in tension. The aerodynamic contour is to be
stabilized and controlled by interactions of aero-
dynamic and inertial forces. Packaging of the
structure into a compact pre-entry configuration is

to be accomplished by folding of the continuously
flexible structure.

Three principally different mechanisms of
apex angle variation as shown schematically in
Figure la-c have been considered:

- The basic cone may be slit along several
meridional lines. This converts the cone
into a leaved disk, generic of the well
known helicopter rotor with hinged blades.
The '"'solidity' of the rotor disk and the
particular planform shape of each 'leaf"
will determine the coning angle at which
overlap of the individual blades occurs and
at which the rotor converts aerodynami-
cally again to a cone. Variable coning
angle requires compliance of the material
only at the apex or "hub'" of the rotor and
may be effected by localized flapping
hinges.

= The basic cone may be considered as mod-
ified by meridional or near-meridional
corrugations. The depth of the corruga-
tion increases as the cone becomes more
acute, it decreases to zero into the con-
figuration where the structure forms a
smooth right circular cone or, in thelimit,
a flat disk. The material of construction
for this type of deformation needs to be
compliant in bending but may be inextensi-
ble in its own plane. The mechanism of
deformation is one of metric and topologi-
cal invariance (isometry) since no in-plane
strains nor cuts are required to allow the
geometrical deformation (Ref. 8). Bend-
ing compliance of the structure is required
along meridional lines in circumferential
direction only,

- A variable apex cone may be generated by
a fabric material that allows a 'trellis
shear" deformation. Here the condition of
isometry for the deformed surface is re-
laxed, since the material is considered as
inextensible only along two specified di-
rections, namely, in the directions of two
families of threads or filaments. A study
of the deformation kinematics of fabric
cones shows, that a thread geometry
forming two counter-rotating sets of loga-
rithmic spirals emanating from the hub
will yield the desired apex angle varia-
bility of a continuous cone shaped struc-
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Figure 1. Variable Geometry Rotor Configurations.

ture. For this design, a change in coning rotor configurations in the previous paragraph, it
angle of the structure is associated with a is clear that the structures considered will be es-
uniform change in the angles formed be- sentially thin walled flexible membranes made .
tween the two sets of spirals, from thin films, fabrics or thin fiber laminates.

These will be incapable of storing appreciable
amounts of heat, and probably prove impractical
From the discussion of variable geometry for application of artificial or ablation cooling

B. Isothermal Atmospheric Entry




methods. Furthermore, the entry flight duration
may be expected to be long, the total heat input
large and the heating rates relatively low. These
structures, therefore, will operate essentially at
equilibrium temperature during the significant por-
tions of the entry deceleration, requiring that the
input of aerodynamic heating to the vehicle surface
must equal the heat radiated from the surface to
the environment.

Assuming that the materials of construction
will be capable to operate at a given maximum
absolute temperature, 9, it appears that an "opti-
mum braking trajectory' can be defined for which
this temperature is uniform throughout the surface
and constant throughout the significant portions of
the atmospheric flight path. A vehicle operation
which satisfies these conditions of uniform and
constant surface temperature will be designated as
Isothermal atmospheric entry.

To define the conditions of configurational
and flight path control required to achieve isother-
mal flight, consider a vehicle in unpowered flight
through the atmosphere of a stationary planet. The
forces acting on the vehicle and the notations used
are shown in Figure 2.
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Figure 2.

Atmospheric Entry Forces.

Considering equilibrium in directions tan-
gential and normal to the flight path yields, respec-
tively

av iny+ D = 0 1

m ¢ mg siny = (1)
dz vz

mv o+ - mgcosy+ L + H+H° cosy = 0 (2)

Eq. (1) can be written in terms of energy rates as
follows:

2
d /mv dH
= &= )+g—dt—+Dv~0 (1a)

The third term in eq. (la) describes the rate at
which energy is lost by dissipation. A portion of
this power will be transferred to the vehicle in the
form of heat, the remainder will appear in the
wake as turbulence and heat.

Following Gazley's notation (Ref. 1), the

heat transferred to the vehicle is expressed as a
fraction, f, of the total energy dissipation. For a
given body geometry, f is a function of altitude, as
shown in Figure 3, which is reproduced from Ref-
erence I. Note that for altitudes where free mo-
lecular flow exists, the fraction f assumes a value
of .5, i.e., half of the dissipated energy is trans-
ferred to the vehicle, the other half is transferred
to the wake (equipartition). For equilibrium, the
rate at which energy is transmitted to the vehicle
must equal the rate at which it is radiated from the
surface, thus

Dvi = 0 € 8% A(VF) (3}
where

o is the Boltzman constant

€ is the surface emissivity

8 is the absolute surface temperature

A is the surface area of the vehicle, and

(VF) is a "view factor' that relates the effec-
tive radiating surface to the vehicle
surface.
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Figure 3. Energy Conversion Fraction.

For an obtuse, cone, approaching a flat disk, (VF)
will approach a value of 2, since both sides of the
thin structure will be at the same temperature and
will radiate off energy, while only the frontal side
is subject to heat input.

Substituting eq. (3) into eq. (1) and regroup-
ing yields:

&Y/ giny = X5 28 b
dt/g-smy-v Tg (1b)

where g$ is a reference gravitational acceleration



of 32.2 ft/sec? (earth surface) and

vk = X3 64 (VF)
gs ™/,

is a specific velocity, characteristic for the vehi.
cle's ability to decelerate by rejecting energy
from a given area A with a view factor (VF) at an
absolute surface temperature 0.

Eq. (1b) and {2) may be integrated for any
given initial condition and lift program provided
that f and g are known functions of altitude H,
and provided that (VF) is known. This allows to
establish generalized isothermal trajectory plots.
From these the control demands can be derived in
terms of drag and/or lift requirements for specific
atmospheric density variations. Two simple cases
have been considered in some detail: Zero lift,
pure drag modulation; and constant drag area,
pure lift modulation:

Drag Modulation

Drag modulation can be accomplished by ad-
justing the coning angle, B, measured between
the plane normal to the cone axis and the cone
meridian (''Helicopter-coning angle'). This con-
trols the frontal area to provide the required drag
at the instantaneous velocity and altitude. A
simple means of control for B consists in a rotor
speed control device which provides the required
centrifugal force components to equilibrate the
coning moments resulting from aerodynamic pres-
sure forces and axial rotor inertia forces.

For the purpose of this exploratory study, it
was assumed that the view factor (VF) be unity,
and the surface emissivity equal .9 . The vehicle
will deploy the cone at a given initial altitude,
velocity, v, , and flight path angle, Yo, into
essentially a flat disk. The trajectory is then
computed for this fixed drag geometry, until the
desired absolute surface equilibrium temperature
6 is reached. At this point, the coning angle con-
trol is assumed to become effective, such that the
subsequent portion of the trajectory becomes iso-
thermal. After deceleration to a low velocity, the
coning angle required to maintain isothermal flight
decreases again to zero. Finally, a constant area
configuration may again be assumed for terminal
flight at subsonic equilibrium glide velocity.

The drag is assumed to be a function of flight
velocity, v, atmospheric density, ps ) + coning
angle 8 and cone surface area A as follows:

2 3
D= Ap,pyV cos 8 (4)

""U.S. Standard Atmosphere, 1962' was used for
earth atmospheric data (Ref. 12), exponential
density-altitude variations have been assumed for
Venus and Mars atmospheres with numerical val.
ues for sea level density and exponential coeffi-
cients taken from Reference 1. The energy
fraction {, was adapted to Venus and Mars by

assuming f to be dependent on atmospheric density
only.

A number of typical entry trajectories for
Earth, Venus and Mars are shown on Figures 4-6.
These were selected for entry conditions varying
from circular orbit decay to straight-in entry with
parabolic velocity and with specific velocities
ranging from 20, 000 to 80, 000 ft/sec. The iso-
thermal and terminal portions of the flight are
shown as a solid line. The initial flight phases,
where the surface temperature is lower than the
maximum permitted by the design, are shown as
dotted lines. Note that the "high v*'" Mars tra-
jectories never become isothermal, i.e., the cone
will remain fully deployed as a flat disk throughout
the trajectory, and the vehicle's operation is not
temperature limited.

Several restrictions will occur in practice
for specific applications. These involve the coning
angle requirement which is subject to practical
limitations. Also, for coning angles higher than
45° the underlying assumptions for drag and heat
transfer would need to be modified. Finally, for
manned operation, the permissible trajectory
deceleration needs to be limited to a value some-
what below 10 Earth g's. In practice, the drag
area control mode would need to be adapted to stay
within those limits and the practicality of the indi-
vidual trajectory will have to be assessed in view
of these limitations.

Lift Modulation

Lift modulation can be accomplished in
trimmed flight by variation of incidence angles
between rotor axis and flight path, Means of
accomplishing trim at finite angles of attack are
discussed in Part II of this paper. For the pur-
pose of trajectory analysis, it was assumed that
the coning angle and drag would remain constant.
Isothermal flight is then achieved by holding alti-
tude at which the desired equilibrium temperature
is reached until the vehicle decelerates sufficiently
to allow descent into denser atmospheric strata,.
This defines the flight path angle ¥ in function of
altitude. The required lift, then can be obtained
from eq, {(2). It is assumed that the vehicle enters
the atmosphere tangentially, i.e., at a flight path
angle of essentially zero. The relation between
flight velocity, flight path angle and required lift
vs altitude on earth entry are shawn in Figure 7
for a vehicle with specific velocity of v* = 20, 000
ft/sec assuming again a constant view factor and
surface emissivity of 1.0 and .9 respectively.

For the particular set of conditions selected,
it is seen from Figure 7 that the lift neéds to be
negative throughout the major portion of the flight.
This is required to prevent re-exit of the vehicle
due to its super-circular velocity at high altitude.
Entry velocities of 40, 000 ft/sec for a vehicle with
L/Dpax capability of -1 are shown to be possible
for earth entry. A ''nose over' condition, requir-
ing large negative lift is indicated towards the end
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of the isothermal flight phase. In practice, this
maneuver would not be required, but rather a
normal glide at reduced surface temperature would
be followed.

C. Analytical Design of Bladed Rotors

For the purpose of a design evaluation, the
bladed rotor configuration was selected for analy-
sis.

For an optimum flexible rotor blade, two
conditions need to be satisfied simultaneously:

- The spanwise distribution of cross-

. sectional area should be such, that the
radial stress s is uniform throughout the
structure (isotensoid condition). This
allows to exploit completely the potential
strength of the blade material.

~ The slope of the spanwise blade axis (local
coning angle 8 ) should be such that the
local heating rates are uniform.

The following assumptions will be made:

~ The blades are sufficiently slender such
that the blade stresses are parallel to the
blade axis.

— The mass distribution of the rotor is pro-
portional to the cross section required to
carry the axial blade tension.

— Uniform heating rates are achieved by
uniform blade slope, i.e., by a blade of
zero meridional curvature.

Consider the forces acting on a blade element
of unit differential spanwise length, cordwise width
¢ and mass/unit length m', rotating with angular
velocity W as shown in Figure 8.

ROTOR AXIS

b
-

i

m'r &
2q c cos B
m
°
w
Figure 8. Rotor Blade Forces.

It is assumed that the aerodynamic pressure force
arises from a complete transfer of the air momen-
tum component perpendicular to the blade axis,
resulting in a normal pressure of 2qcos“8,
where q is the free stream dynamic pressure. It
is further assumed that blade mass inertia forces
due to flight path accelerations are negligible
compared to the centrifugal forces caused by rota-
tion.

The equilibrium conditions tangential and
normal to the blade axis then are:

dT . _ 2
- a—r— = m rw (5)
chcoszﬂ = m'rwzuinB (6)

Eq. (5) can be integrated by considering

’ dm dm
m-TlT-_d—l‘—cosB'and
T =m'2

o

where p is the density and 8 is the stress in the
blade material, yielding

SELTLUS §a
m'=m' e (7)

where mltl indicates the mass/unit length at the
hub radius rp; .

R = l'/ro and Ry, = TH/,
°

H
are non-dimensional coordinates, and

2
Q-= w2

o
is a non-dimensional rotational frequency charac-

teristic for the blade design.

The mass distribution given by eq. (7) {(and,
therefore, the rotor's cross-sectional area) does
not vanish at the tip R = 1 . Therefore, a concen-
trated tip mass, mg,, is required to satisfy the
condition of constant stress:

Q 2
"o ’ -T(I-RH)
m e

T ™H 8)

m =

This will normally be a small fraction of the total
rotor mass.

From eq. (6), a relation between the chord
distribution and mass distribution is derived that
satisfies the condition of uniform coning angle:

2 2
c=c Re (9)

where the reference chord width is defined by




Q 2, -1
c e m' 1 wztanﬁzin[l_e-?“-RH)]
REF H"o 2q l’o
Figure 9 shows non-dimensional plots of the mass
and chord distribution of rotor blades satisfying
the condition of uniform stress and coning angles
for a number of selected values of the non-
dimensional rotational speed 1.

The distributed rotor mass is obtained by
integrating eq. (7). The result can be expressed
in terms of the tabulated probability function

b |
2 -X
I = —_— dx
pixy) /"I b
0
as
=m +m’ L[~ 3 (10
Mp = M¥myt\n (RH.O) )

where

L
J = /5 e
(R ) \/:

For practical values of £} and Ry, the expvesmion
J(RH' q) Will approximately equal /2 .

a
3

R
H[Ip(vﬁﬁ) " py/arz FF)]

The resultant force Fyy, parallel to the
rotor axis which is imparted to the payload mp is
equal to the required trajectory deceleration,
given in terms of Earth gravity gt

- . - t 8 . =
FH = TH sin8 = m > sinf mp(ngs)
This permits computation of the relative mass

fraction between the mass mp of an ideal rotor
and the payload mass mp :

J
mp LO(SF) 1 1 (RH. Q)
—— =n— . I (11)
Mp op 78 ~Mo/Mp

where Ag ., is the specific strength of the rotor
material, and (SF) is the ratio of ultimate tensile
strength to working stress (Safety Factor) em-
ployed in the rotor design. Note that the rotor
mass fraction is a linear function of absolute size
4. This is an expression of the ''square-cube
law' well known in aircraft design.

With some transformation, eq. (11) can be
written as

J
TR _ . [eb(SF) 1 (Ry» O (12)
my wZX sinf cosf 1 - mov
sp R

Here, the rotor mass fraction is seen to be in-
versely proportional to the rotational frequency.

Since rotor stress is a direct function of tip speed,
again, the rotor efficiency is penalized by size.

Introducing reasonable values for a series of
rotors with a payload capability of 3000 lbs, the
rotor structural mass fraction is found to range
around 1% to 5%. For instance, let the designing
condition of an entry condition be

10

"

n

B = 45°

il

Assume the rotor to be designed to rotate at

w = 10 rad/sec, to be made from a material with
a specific strength of .5 x 10” in, and to be de-
signed with a safety factor of 2. For these val-
ues, the ideal structural rotor weight fraction
becomes approximately 2%.

In many instances, the weight of the rotor
will not be determined by strength considerations,
but by considerations of minimum practical ma-
terial thickness at the rotor tips. In this case,
the ""constant stress'' rotor mass is determined by

mp = Aptmin,/n_ J‘RH' ayt ™, (11)

The rotor mase given by eq. (11) does not neces-
sarily represent a minimum, since gage consider-
ations may only affect a portion of the blade area,
allowing the strese to be higher at the root than at
the tip.

Another consideration is that of distributed
rotor masses associated with surface area cover-
ing in addition to that required by structural
strength alone. Such non-structural ''parasitic"
masses affect both the structural mass distribution
and the chord distribution of an idea} blade. Ana-
lytical design equations similar to those presented
in this paragraph have been developed for this
case. Their detailed presentation is omitted from
this paper for the sake of brevity.

D. Materials Selection for
High Temperature Rotors

The material to be used in the construction
of rotors needs to be formed into thin, flexible
membranes: or fabrics. Fortunately, an exten-
sive effort haa been directed, during the past few
years, towards the study and development of tem-
perature resistant, packageable filament and
fabric-type materials, particularly for application
of high speed parachutes, temperature resistant
filament wound structures and others (Ref. 9-11).

In comparing the relative merits of candidate
materials, a controlling parameter is their ability
to maintain a useful tensile strength for a given
structural mass while rejecting thermal energy by
radiation. This leads to the definition of a mate-
rials parameter

Q=o<94x
sp



Since both, the emissivity € and the specific
strength are temperature dependent, Q , will be an
empirical function of temperature, normally rising
to a maximum value after which the degradation of
strength becomes stronger than the increase in
radiative power dissipation.

In practice, the situation is further compli-
cated by the fact that the strength is not only a
function of temperature but also of the previous
load-temperature history. For the purpose of this
discussion it was decided to compare materials on
the basis of their short term strength-at-tempera-
ture characteristics which may be considered
reasonably representative for the intended opera-
tion of the rotor configuration during atmospheric
entry.

Values for strength and surface emissivity
for candidate materials were collected from
numerous reference sources. These data were
reduced to Q-values and represented on the com-
posite graph of Figure 10. The outstanding poten-
tial of elemental boron fibers in the particularly
interesting temperature range from 400°C to
1200°C is readily apparent from this graph.

Since little reliable data on this relatively
new material were available, a laboratory setup
for the production of experimental quantities of
continuous boron filaments was constructed. Fila-
ments of approximately 2 mil diameter were pro-
duced and subject to tensile tests at temperatures
up to 1200°C in inert atmosphere and air. In
addition, several composites and laminates were
made with elemental boron fiber base materiale.
The test data, as reflected in Figure 10, generally
confirm the exceptional physical properties of this
material.

v-%

Figure 10. Material Parameter Q
vs. Temperature,

For rotors that can operate at very low v* -values
(for shallow entry) equilibrium temperatures of
400°C and less appear to be practical. For this
application, various types of glass or temperature
resistant synthetic textile fabrics can be con-
sidered.

Alternatively for small, highly loaded rotors,
such as may be required for "straight in" trajec-
tories, v* -values of the order of 80, 000 ft/sec
may be required. For these missions, carbon or
graphite cloth may be considered for planetary
entry into non-oxidizing atmospheres.

E. Experiments

A number of rotor models have been fabri-
cated and subject to qualitative tests in a low speed
vertical tunnel. The models were designed to rep-
resent the three basic configurational control
schemes—bladed rotor, fluted core and spiral net—
discussed previously. The tests were conducted to
observe the ability of the various model to deploy
themselves in an axial airstream, and to auto-
rotate at various coning angles and through a range
of angles of flow incidence.

The airstream velocity in the test section of
the tunnel was 14 ft/sec generating a dynamic
pressure of approximately .22 psf. The configura-
tion of the model rotors are such that in most
cases stalled or near-stalled flow conditions pre-
vailed, thus the aerodynamic characteristics of
hypersonic flow are approached at least qualita-
tively.

Characteristic flutter motions in non mass
balanced blades and deployment dynamics of the
various rotors were observed and recorded by mo-
tion picture. Rotational speeds were measured by
means of strobelight, airspeed by means of a
torque vane. No attempt was made to obtain quan-
titative lift and drag data. It was observed, how-
ever, that most rotors would more than support
their own weight in axial flow, indicative of normal
force coefficients based upon disk area in excess
of 1 to 1.5.

Bladed Rotors

Figure 11 shows a typical biaded rotor made
from thin mylar film, rotating with essentially
zero coning angle at approximately 220 rpm and an
angle of flow incidence of approximately 70°. It

Mylar Film Blade in Autorotation

Figure 11. v
at Incidence Angle of 70°.




was found that the blade center of gravity axis
needs to be placed slightly forward of the 25%
chord line to prevent torsion-bending blade flutter.
Balancing is accomplished by small lead weights
clamped to the leading edges of each blade. The
rotor is completely flexible, mounted to a bearing
supported hub that can be tilted during operation
through a 90° angle, simulating flight at various
angles of incidence. This model deployed auto-
matically if subject to an axial airstrearm and main-
tained stable autorotation throughout a 70° range of
inflow incidence.

Fluted Cone

Figure 12 shows a model of a fluted cone
configuration, made from dacron fabric. Tip
weights are attached to short chain links at each
seam of the convoluted configuration. The convo-
lutions are tailored to form a spiral groove causing
the configuration to be driven into rotation by the
axial airstream. Automatic deployment at low
axial flow velocities was achieved. Significant
angles of flow incidence could not be maintained
with this model.

Figure 12, Fluted Cone in Axial Flow,

Spiral Net

An open mesh spiral net model in axial flow
is shown in Figure 13. Autorotation is maintained

Figure 13.
Tip Impeller Tab.

Spiral Net Rotor with

by impeller tabs fastened to the periphery of the
net. Tilting of the hub axis, as shown, did not
affect the rotors tendency to be oriented with its
plane normal to the airstream: The same net is
shown with an aerodynamic covering in Figure 14.
Both configurations deployed automatically in axial
stream and maintained stable rotation through a
range of coning angles.

Spiral Net Rotor with

Figure 14,
Aerodynamic Cover,

A composite configuration of two nets
mounted with hubs spaced by a shaftis shown in
Figure 15. The upper net is open, as shown in
Figure 15, the lower net is covered to provide
aerodynamic surface. Coning angle control of this
configuration is affected by varying the distance of
the two hubs on the shaft. This configuration
proved capable of maintaining stable rotation at
incidence angles up to approximately 45°.

Figure 15,

Composite Spiral Net Rotor.

F. Application

A number of mission profiles as reflected by
the trajectory requirements have been studied in
view of the particular design configurations re-
quired. A conceptual design for a vehicle, capable
of Mars entry with an initial flight path angle of
30° from parabolic velocity and return into earth
atmosphere with an initial path angle of 5° from
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circular orbit is shown in Figures 16, 17, and 18,
Figure 16 shows a deployed "low q" configuration
of the vehicle required for the initial entry and
terminal flight phase.

"ﬁ HTTROND FAvee

UMummm

Figure 16, Deplayed Rotor - Low q Configuration.

Figure 17 shows the required "high q'' configuration
at maximum deceleration with a coning angle of 70°,

OEMOYED  CONPIGURATION - HigH G

Figure 17. Deployed Rotor - High q Configuration.

Some details of the capsule arrangement with the
packaged rotor are shown in Figure 18.

)

Figure 18. Packaged Rotor and Capsule Concept.

The design characteristics selected faor this
vehicle are:

Total mass : 2000 lbs

Rotor area : 10, 000 ftz

v* : 20, 000 ft/ sec

Q ¢ .33 x 107 1be/sec

Maximum deceleration: 10 83

Rotor design data are as follows:

Blade parameter  : 4

Blade length "o : 135 ft
Temperature’ : 760°C
Design safety factor : 2

Structural weight of

ideal rotor 43.7 lbs
Tip weights
{total of 8) 2.4 lbs

The structural requirements for the particular
configuration selected leads to extremely low blade
thickness (1.3 mil at the root). Thus, it would be
expected that a ""practical' design will employ a
heavier rotor by perhaps a factor of 5. Even if
this penalty is accepted, the payload mass fraction
would appear to compare favorably with ablation-
protected entry capsules. It points, however, to
the desirability of developing extremely thin, heat
resistant fabric and film materials for this appli-
cation.
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PART Il

HYPERSONIC ROTOR DYNAMICS

Introduction

The desirability of very low density centrifu-
gally stabilized drag and lift producing autorotating
surfaces has been discussed in Part [ of this paper,
A critical problem area is that of flight dynamics
of rotary wing vehicles in hypersonic flow. Since
opportunities for testing free flight models under
hypersonic conditions will be rare, analytical pro-
cedures must be ueed to the fullest extent to deter-
mine the stability and control characteristics of
rotary wing re-entry devices.

Little precedent exists for this type of ~naly-
sis. The analysis presented in this preliminary
study, therefore, is developed from basic concepts
of Newtonian flow and with a minimum of originally
restrictive assumptions. The presentation given
here confines itself to the development of the per-
tinent equations, suitable for processing on digital
computers. It is intended to apply this method to
one or several typical rotor configurations to ob-
tain insight into the feasibility of proposed design
concepts.

A. Aerodynamic Forces

In an autorotative descent with very large
thru-flow velocity, rotor speed stability requires
that the angle of attack of the blades be near either
zero degrees or near ninety degrees. The large
angle of attack (corresponding to the wind-mill
braking state) is selected for hypersonic re-entry
because it results in much larger rotor thrust.
Expressions for aerodynamic forces on rotor
blades at large angles of attack are developed in
Reference 1 for Mach numbers from 0.5 to 3.0,
and are applied to the performance characteristics
of a rotating decelerator. For Mach numbers
above 3.0 and angles of attack greater than 10°,
simple Newtonian flow theory is adequate for the
evaluation of rotor dynamic response, and the es-
timation of performance.

In this section of the report a general theory
of hypersonic rotor dynamic response will be de-
veloped by the blade element approach using New-
tonian aerodynamics. The results will be applied
to the determination of trim conditions for lifting
flight (non-zero L/D) and to the calculation of ve-
hicle dynamic stability, Unexplored problem areas
to which the theory can also be applied include vi-
brations, flutter and dynamic loads.

It will be assumed that a rotor "blade" is a

thin sheet, that the tangential aerodynamic force
on the sheet can be neglected (except in rotor
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speed calculations), and that the aerodynamic
force normal to the blade on the side opposite to
the flow is zero. Then, according to Newtonian
flow theory, the aerodynamic force normal to an
element, S, of blade area is

Fo = pSvnivnl (A-1)

n

where p is the density of the air and v_ is the
component of the velocity of the undisturbed flow
normal to the element of area. The absolute value
sign is used to indicate that the force changes sign
when the flow impinges on the reverse side of the
element. In order to avoid mathematical difficul-
ties it will be assumed that, under all conditions,
v_>0 ; in other words, that the flow always im-
p{lnge! the lower side of the blade element. This
assumption must be remembered in applying the
results to extreme cases.

The first task in developing the theory is to
calculate the aerodynamic force on a blade element
in response to the motions of the blade element and
the translational velocity of the rotor. The com-
ponents of motion and the coordinate systems to be
used in the analysis arc¢ =uown in Figure 1, The
X, v,z coordinate system rotates with constant an-
gular velocity w about the z-axis. The axes x
ys and z are inertial axes that translate with
velocity components U and V with respect to the
atmosphere. The axis of one blade is assumed to
be in (or near) the y-z plane except for dynamic
motions and small static offsets. The velocity
components of a blade element, in the x,y,2z co-
ordinate system relative to the airstream are

v. = x-wy-Vsin

x
vy = y+wx-Vcosy (A-2)
v =2-U

z

Consider a blade element whose normal is
tilted with respect to the coordinate system as
shown in Figure 2. B is the coning angle and 8 is
the pitch angle about the blade axis. The compo-
nent of velocity normal to the blade element is

Vo' Ve sinf + vY cosf sinf - A cosb cosf (A-3
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Figure 1. Coordinate Systems.

Figure 2.

Direction of Normal to Blade Element.
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Substituting into eq. (A-1) and assuming that Yo >0
the force on the blade element is

F =

. ps{(-x+wy+Vein ¥ sin’0

+(y+wx - V cos w)z couze sinzﬁ
+H-z + U)z cos?8 coazB
+2(-kx+wy+Vsin P)(y+wx -V cos P) 8inb cosb sinf
+2(-x+w y+Vsin $)(-2z + U) sinfcosbcosB (A-4)
+2( y+wx=-Vcosd)(-z+ U) cosze sin8 cosﬁ}
The complete generality afforded by this
equation will not often be required. For many ap-

plications it is satisfactory to assume that x = 0,
that @ is small, and that x and y are small com-

pared to the other components of velocity. In this
case eq. (A-4) reduces to
Fn = pS {(U cosB - V cos ¥ linﬂ)z
-2y(V cos ¥ uinzﬁ - U sinf cosB)
(A-5)

-2z(U coszﬁ -V cos ¢ sinf8 cosB)
+20{wy + V 8in $){(U cosB - V cos ¥ sinﬂ)}

This expression is adequate for treating small
perturbations of rotor motion at small pitch angles
out with arbitrarily large coning angles and arbi-
trary angles of incidence of the flight path with re-
spect to the rotor plane, provided only that tan8 <
U/V , in order to avoid flow impingement on the
top surface.

Resultant forces and moments are obtained
by multiplying F, by appropriate geometrical fac-
tors and integrating over the surface of the rotor
blades.

B. Rotor Trim Conditions for Lifting Flight

The rotors considered in this report are
characterized by extremely flexible blades that
have virtually no bending stiffness in the flapwise
direction. In steady flight the thrust of such a ro-
tor must be very nearly perpendicular to the tip-
path plane, as shown in Figure 3, because the
oscillating component of blade tension is necesar-
ily small compared to the steady centrifugal ten-
sion.

The ratio of lift to drag for the rotor is
simply

L v

/D = tana = /U (B-1)
An additional result of extrerme blade flexi-
bility and small flapping hinge offset is that the
moment, M , exerted by the rotor on the hub is
very small, In order to obtain a positive criterion
for trimmed flight, we shall assume that the
steady aerodynamic moment on the hub is zero.

[T
\
D
~ ROTOR
M DIRECTION OF
FLIGHT PATH
U
I
I\ROTOR AXIS
Figure 3. Rotor in Steady Lifting Flight.

In the absence of the cyclic variation of
some rotor parameter, the aerodynamic force will
be greater on a blade when it is in the forward po-
sition (p = M) than when it is in the trailing position,
due to the finite coning angle, 8 . Cyclic pitch is
the conventional means for controlling the angle of
incidence of a subsonic helicopter and it can also be
employed in hypersonic flight. From eq. (A-3),
the component of velocity normal to an element of
blade area is, in the absence of dynamic motions:

vy = (wy + V sin ) 8inb - V cos ¥ cosb sin8

+ U coseB cosb (B-2)

Let 6 = 6] cos § and calculate the normal compo-
nent of velocity for § = 0, /2, m and 37/2

vn(O) = wysinel -Vcosel ainﬂ+Ucose1 cosf
" = =

vn( /2) Vo (37/2) U cosB

vn(ﬂ) = ~wy sinﬁl +V coeBl sinf +Uc059x cosf

An approximate condition for trim is ob-
tained by equating the moments in the zero and 180°
azimuth positions:

2 2 2 2
_rpy vn(vr) cos 61 ds = ‘fpy vn(O) cos 9l ds
which results in the required cyclic pitch
(B-3)

tan8, = A sinf
1 WV

y
where

7 = szdS/]’ yds

and it is assumed that B8 is constant along the span
of the blade.

The effective '"advance ratio'' for the rotor,




v/w? may be very large (of the order of 10) in hy-
personic re-entry. Furthermore, B will not be
small if the rotor weight is small compared to the
thrust so that the required cyclic pitch angle may
be quite large. This result discourages the use of
cyclic pitch to obtain lift, particularly since .he
collective pitch required for practical rotor speeds
is very small.

An alternative to cyclic blade pitch is the use
of flaps to produce an effective cyclic variation in
blade area by the mechanism shown in Figure 4 or
in some other way.

Figure 4. Flaps for Producing Effective
Change in Blade Area.

Let the effective area of a blade element be
S = S0 + Sl cos P ({B-4)

and calculate the first harmonic (one/rev) com-
ponent of aerodynamic force on the blade element
from the first term in eq. (A-5). (First harmonic
force in the rotating coordinate system results in
steady moment in the non-rotating system). The
result is

F = ocoub{-zs

n 0 UV sinfcosf

1 {B-5)
+ S1 (% Vz sinzB + Uz colzﬂ)]

For a blade in which the ratio sl/So is uni-
form along the span, zero first harmonic flapping
moment is achieved if

S
1/S - 2 UV sinf cosf
0 %Vz sinzB + UZ coszﬂ

(B-6)

which for small 8 reduces to

Is, = 2 VivtanB = 2 /D tanB (B-7)
Thus for small coning angles and reasonable values
of L/D the required percentage variation in area
may not be unreasonably large.

Because coning angle is the reason for the
aerodynamic overturning momeni in lifting flight,
we are led to a consideration of means for elimi-
nating the effective aerodynamic coning of the rotor.
This is accomplished by the tip flapping vanes
shown in Figure 5. This configuration is aero-
dynamically a hybrid of a conventional rotor (con-
cave upward) and a parachute {concave downward).

Figure 5. Rotor with Tip Vanes.

The general idea is that the reverse coning,
By . of the vanes decreases the aerodynamic force
on the forward blade and increases it on the aft
blade. The aerodynamic force on a blade element
per unit of span is

F = pc {UcouB - Vsinﬂcolw}z (B-8)
L

while for the vane

F_ = pc {Ucosp +Vsing cos 4’}2 (B-9)
L v v v

If the chords ¢ and ¢_ are uniform along the
span then the moment about the hub is

2
l'b
M = - Fnb + Lv Ln coo(Bv +8) an (B-10)

and substituting for F , and F.,

pcl,2

M = Tb {UZ[COlZB+Kv cosZBv cos(Bv+B)]

-2UVcosy sinﬁcosﬁ-KvsinBvcostcos(Bv*'B)] (B-11)

+Vz co-z d)[linzﬂ + Kv 'inz Bv cos (ﬂv +ﬁ)] }
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Figure 6. Vane Reverse Coning for Trimmed Lifting Flight.
(See Eq. B-13)
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Figure 7. Vane Cyclic Coning for Trimmed Lifting Flight.

(See Eq. B-15)




where

K s ——— (B-12)

To achieve zero one/rev component of mo-
ment the coefficient of cos¥ should be zero.
Therefore, to achieve this condition with constant

B,

sin 8 cosf8 = Kv linﬁv cole coo(ﬁv +8 (B-13)

The relationship between 8 and B8 for dif-
ferent values of K, are plotted in Figure 6. It
will be noted that for a given K, there is a maxi-
mum value of 8 for which trim can be achieved
and that, for practical values of K, the maximum
value of 8 is 20° or less.

An interesting fact is that the condition of
trim is independent of & = tan~! L/D (except indi-
rectly since 8 depends to some extent on a).
Thus, the effect of a vane angle set to satisfy
eq. (B-13) is to eliminate the static stability of the
rotor with regard to overturning moment. A re-
duction rather than complete elimination of static
stability may be desirable so that we are led to a
cons..cration of a combination of a constant vane
angle somewhat less than that given by (B-13) plus
a cyclic variation of 8,

pv = "’o + pvl cos P (B-14)

For B, = -8, the vane flaps cyclicly with respect
to the cone generated by the rotor blade thus
representing a condition of pure cyclic control,
and for this case the condition of zero overturning
moment is:

2 .2 \'4 1
(V/ig) sin“8, + V/y(=— +cosB_ cos28
v "1 U(Kv Y1 "1>
- sinf, cosz’v =0 (B-15)
1 1

Note that this result is independent of 8.

V.. is plotted in Figure T for several values
of Kv . i-'lor reasonable values of Kv' the obtain-
able value of V/U is fairly small,

Consider, finally, a case where most of the
aerodynamic trim is provided by 8 so that 8,
may be assumed to be small, Undep these con- !
ditions

2= Vi (sin2B - K cos(8+8,

) sin28_ ) =
v 0 Yo

= By, ‘sin® B, win(B+Ay ) - sin(B 438, )+ (B-16)

+ (V/U)Z [sin(ﬁ + 3va) +cos? pvo sin(8 +3vo)]}

The left side of this equation represents the portion
of the overturning momem that is not trimmed by
collective vare angle. The coefficient of ﬁv
changes sig.. .or a value of V/U that is appr{)xi-
mately equal to

B+ 38,

28 + 48,
0

Near this value eq. (B-16) is not valid since it re-
sults in a large value of 8, . Below this value the
rotor is statically stable wi{h regard to overturn-~
ing moment if the left hand side of the equation is
positive. No conclusion regarding overall vehicle
stability can justifiably be drawn from this state-
ment at the present time because the connection
between rotor static stability and vehicle dynamic
stability has not been explored.

C. Dynamic Equations of Blade Motion

Equations of rotor motion will be developed
that are suitable for the analysis of the complete
vehicle for small lateral perturbations from axial
flight, It will be assumed that each rotor blade has
a single degree of freedom, B8, consisting of a
rigid rotation about an offset flapping hinge. In
addition, the hub has four degrees of freedom, con-
sisting of two lateral translations and two rotations
about lateral axes. In an analysis of the complete
vehicle the rotor will be represented by relation-
ships between motions of the hub and the resulting
forces and moments on the hub. In this section
equations will be written for a single blade in terms
of its flapping degree of freedom and the four de-
grees of hub motion x,, @,., y,. 8, . The degrees
of freedom and basic dimensions are shown in
Figure 8.

The flapping angle consists of a constant part
Bc and a small dynamic perturbation 8]. The
coordinate system rotates with angular velocity w
about the z-axis.

An important simplification in analysis and in
the presentation of results occurs if the steady
inertia and aerodynamic forces.are distributed
along the blade in such a way that the equilibrium
shape of the blade is a straight line. This condi-
tion is satisfied if

pc Uz co-z B = m'r wz sin ﬁc v (C-1)

where c is the chord of the blade, m’ is the r.ass
per unit length and r is the distance from the axis
of rotation, With this assumption, the mass den-
sity of a uniform chord blade is proportioned to
1/r. It is further assumed that there is no mass
inboard of the flapping hinge.

Under the assumptions stated above the homo-
geneous equation of blade flapping in the absence of
hub motions is



Figure 8.

Degrees of Freedom for
Rotor Blade Analysis.

B, +2wpbﬁl+wz+(%z =0 (C-2)
where
be
2 2 01
% = W LZ (colﬁc + 2 linﬁc tanﬁc)
02
3
Cb = Wiy ;z nnpc
02
4
'“01 = ;—nl— f m'-dl;l,ozz _—l- m'lzdl,
L
L123 R | m’rs"ds
v
m, A
P2
mb = J m ds
[¢]

It will be observed that the effect of an off~
set flapping hinge is to raise the natural frequency
of vibration above w by an amount that increases
with increasing 8.. The critical damping coef-
ficient {p is equal to the product of tanfB. and a
number that is proportional to tip speed ratio. As
an example, consider the following conditions that
might exist at maximum dynamic pressure during
re-entry.

wi = 2000 ft/sec
U = 16000 ft/sec
B = 20°

Then, for a blade with uniform mass and
zero flapping hinge offset

20

. Wi 3 -
L = g tanB_x7 cosg_ = .032

which is about one-tenth of the usual value for a
subsonic rotor,

The general equations of motion including hub
motions can be written in the following partitioned
matrix form

r N
rFx n [ ; 1 *n
Fyn l Yn
Hn IHB )
< M¢n b = ¢n b (C-3)
MG n l en
_2l B D B
M B B B
. Bl P L. " I p-‘ - 14

The twenty-five coefficients in this equation
are listed in Appendix I. These coefficients are
derived from three sources—the stiffening effects
of the static centrifugal forces and the static aero-
dynamic load, the perturbation inertia forces in-
cluding Coriolis effects, and the perturbation aero-
dynamic forcee. Eq. {A-4) was used as the basic
source of aerodynamic coefficients and the constant
coning angle assumption {eq. (C-1)), was employed.

The forces and moments on the hub can be
expressed in terms of the motions of the hub by
eliminating Bl from eq. (C-3), with the resulit

'F 3 [ x )
X n n

Fyn -1 Yn +

91 t =|H -H_B_'B C-4
M [ n BB n] * ) (e
¢n n

LMenJ Lena

This expression can only be interpreted as a matrix
of transfer functions in terms of the derivative op-
erator, p , because of the presence of the inverse
of B, .

8

D. Lateral Rotor Derivatives

When analyzing the stability of the vehicle as
a whole it is convenient to express the relationship
between the forces and moments on the hub and the
motions of the hub in terms of a matrix of
frequency-dependent transfer functions. For small
perturbations from axial flight, symmetry of the
rotor permits the transfer functions for lateral mo-
tions to be written as follows in the non-rotating
coordinate system:




{D-1)

¢ s x x I "] [] [}
k MO s Lﬁx @x |3° - °¢_ g6'4

Note that there are only eight distinct transfer
functions. Due to the symmetrical form of

eq. (D-1), the following transformation to complex
response variables results in considerable sim-
plification,

F = F + iF
x8s ys
M = M¢ . + i I\(9 .
(D-2)
[ = x, + i Y,
n = o' + i 9.
because, from eq. (D-1)
F F F (3
=1 ¢ n (D-3)
M M M
3 n n
where the complex transfer functions:
F€ = xx + i Yx
F =X + iY
n ¢ [/
(D-4)
M, = & + i8
[4 x x
M = + i
n- % 1%

An analogous set of relationships can be
written for forces and moments on the hub in the
rotating coordinate system

F| |F, F
I (D-5)
M M, M

E n

|
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where a bar is used to indicate variables and
parameters in the rotating coordinate system. The
complex transfer functions in the non-rotating co-
ordinate system can be calculated from transfer
functions in the rotating coordinate system by
means of the following theorem developed by J. H.
Hill (Reference 2). (See Appendix II for derivation).

Fetd = Feiphlp = o-i

(D-6)
L e
Etc.

where p is the complex frequency parameter in the
rotating system and & is the complex frequency
parameter in the stationary system. Thus, to ob-
tain F_ , simply substitute p = s -iw into Fe .

3

Equation (C-4) indicates the form of the real
transfer functions in rotating coordinates for a sin-

gle blade. Writing out the terms in the matrix

( b o — —_— — - ( N

F:(n xxn xyn|x¢n xen *n

Fyn Yxn Yynlyﬁn én Yn
{d——=2=]— — —]— — —|{—— (D-7)
Mﬁn xn ynléon Qen ¢n

M -

L 6nj __exn ynl ¢n 'é_en_‘ L nJ

For a single blade, symmetry such as that indi-
cated by eq. (D-1) does not exist. Nevertheless, it
is shown in Appendix II that, for the rotor as a

whole,
n —_
Fe (s) = 2 [;Exn+yyn
+‘(Yxn - xyn)]p= s-iw
N _ (D-8)
F =< 11X +Y
n (s) 2 [—o n 6n
+ 1(Y¢ n_ xe n)]p =s-iw
Etc.
where n is the number of blades. Thus, eqs.

(D-8) and (C-4) provide a procedure for calculating
transfer functions for the rotor in stationary co-

ordinates from the equations of motion of a single
blade.

Stability derivatives are defined by relation-
ships of the sort

F =f $Ef +Ef 4. f tEh 4.
££ £€ ££ n? "7

(D-9)

M =m€€+méé+mzé+...mnn+mhﬁ+....

where fp , f, fE cee Mg ..My etc. are sta-
bility derivatives.

Stability derivatives may be evaluated from
tte properties of the transfer functions at s =0 .
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e = I"g(»)l
d
fE- == FE (')I - (D-10)
R U LA
E—Z Z e(l)|l—0
Etc.

Utilizing eq. (D-6) and the scaled frequency varia-
ble, $ = Plw

L

(D-11)

In the present instance only the static and first
derivative terms will be computed. The thirdterm
yields the effective mass properties of the rotor.

It will be assumed in evaluating mass properties
that the rotor is a concentrated mass located at its
center of gravity.

The real stability derivatives are obtained
directly from the real and imaginary parts of the
complex stability derivatives

f o= f +if
£ x Y (D-12)
£ 0= f. +if.
¢ x y

We now turn to the evaluation of rotor trane-
fer functions by means of eq. (D-8), substituting
from eq. (C-4) and making use of the termes tabu-
lated in Appendix L.
F, - M H_+ H +i(H_-H_)

A X [ +i( yx ~ xy

sinz 8

+ > z° (D-13)
L, (1+% tw +2(F)

(H2 + iH¥)(BY - 15*)}_

__._‘

The total thrust of the rotor is, under the
assumption of constant coning angle,

2 :
'1'o = n mbw l’lo ach cosac (D-14)
so that eq. (D-13) may be written as:
o 1 -
F = — —_—— .
£ 2 {Llo 8inf  cosf HEQ
c c
(D-15)
. tang -
T e ooz
10 *02 w
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where
H =H +H H -H -
[ X3 xx yy (Hvx Hxv) (D-16)
(H* + i H¥)(B* - i B¥)
HY, = = Y x X (D-17)

2 2 -
1+ + &, + 20

The rotor derivatives f

and f; are obtained
by applying eq. (D-11) to eq.

D-15).” Both H

and B: - iB; vanish for p = -i , so that: e
f =0
¢
and
__o 1 d =
t 2w {"10 sing_cosg_ dp (Hgg)
c c
(D-18)
tanec H* +i H* d
+ = (B*-iB¥%)
2 c dp x Y J—
Llo 12 02 wb 2i p=
In like manner, mE =0,
and
T 1 d =
mc T2 {LIO sind_cosg_ dp (H'ng)
c c (D-19)
%4 i
tamﬁc !—I¢5 + i H§ d .~
+ —_— (B* -iB )
L 12 UT 23t dp _
10702 “b " % P =
The vanishing of ff and m;g is an expression

of the fact that the location of the hub in space is
immaterial to the forces on the hub. The static
derivatives of angular orientation are

[¢) 1( 1 -
n 2 4 ,sinf_ cosB_ én

(D-20)

—————— H
‘{'10 nnﬂc cosﬁc nn

(D-21)

L P .
(Hx+lHy)(B¢-lB6)

I
*
]

(D-22)

- . -2 . =_
p=-i wb-21§b p=-

and




*
= (D-23)
m i w: - 21 Cb p=-i
The derivatives of angular velocity are
' * 2w { unﬁ col’ d'ﬁ (HCn
tanf (H"‘ + m‘)
+ < 9B (D-24)
Lt 2 én H; + 1H*
10702 y
BY - 1B‘ 2L, - 2i
+ dp : L. sz ]}
B* - i B* — .
¢ 0 Wy, - 288, "5
and
T
o 1 d =
m: = = == (H_})
n w {Llon cconﬂc 4 " mm
tanf ,—d: (H*+iHY)
* T Him Ldpm :mte (D-25)
I Ay ® ()

10702
4 (B* - nB"’) 2

= C
dp ‘¢
M Ty T 2 it ]}
[ ] b P' i

All of the factors required in these equations for
the evaluation of rotor derivatives are listed in
Appendix III in terms of physical rotor param-
eters.

The rotor derivatives may be related to
dimensionless derivative coefficients by the follow-
ing formulas

TO
e =0 % "ot C
£ T C 'y To
. . o« 2c.
n o'n wt “n
T (D-26)
m£ L) m& = w—op-
Tt
m, = TAD_ m; = =D,

where L is the length of the blade outboard of the
flapping hinge (see Figure 8).

The real and imaginary parts of the dimen-
sionless derivative coefficients are plotted in
Figures 9 and 10 for a uniform mass distribution
along the span of the blade. An immediate obser-
vation from these figures is that the rotor deriva-
tives vary through wide ranges as functions of tip

speed, coning angle and flap hinge offset.

¢ (= L. P. Cy) is the directional stability
of the rotor. For a conventional subsonic helicop-
ter the value of this derivative is -1.0 corre-
sponding to neutral directional stability. Values
greater than -1.0 yield positive directional
stability with respect to the flight path. It may be
observed in Figures 9c and 10c that the directional
stability is essentially zero for zero flap hinge
offset, and that it increases with increasing coning
angle and decreases with increasing tip speed
ratio.

y¢ is the conventional pitch damping deriv-
ative for a rotor without flap-hinge offset and for
positive values the damping in pitch is positive
(stable). It may be observed in Figures 9d and 10d
that large coning angles and values of b/{ near
. 05 produce negative damping in pitch. This re-
sult is offset by the large negative values of D¢é
in the same neighborhood (Figures 9f and 10f).

It will also be observed that surprisingly
small values of flap-hinge offset have a large
effect on all derivatives. The damping of the
rotor is very small at low tip speed ratios so that
the detuning effect of flap hinge offset is significant
even for very small values of this parameter. No
conclusions regarding dynamic stability of the
vehicle can be made from the rotor derivatives
alone except to say that stability may be expected
to vary widely at points along a reentry trajectory
that have different tip-speed ratios and coning
angles.

E. Lateral Stability in Axial Flight

It is assumed that the vehicle to which the
rotor is attached is rigid, is doubly symmetrical,
and has the same moment of inertia about two lat-
eral axes. The equations of motion expressed in
terms of hub motions are

m (x' - 19.) =z F’“ (E-1)

m ('y’. + zb'.)s Fl. (E-2)
2. . ..

(Ic'+mz )¢-+ T°z¢.+mzy' = M¢' {E-3)
z oo .. _

(lc'+m: )9.+ Tozﬂ.-mzx. = MOs (E-4)

where

m = mass of the vehicle

z = distance measured aft, from c.g. to hub
Ic' = pitching moment of inertia about the c.g.
To = total thrust of the rotor

Introduce the complex variables defined in eq.
(D-2)

mE+imzn = F (E-5
2 : = -
(lc'lrml )H+ T sn - imz{ =M (E-6
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Figure 9. Rotor Derivatives Plotted vs. Tip-Speed Ratio.
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Replace the force and moment due to the hub by the
expressions in eq. {D-9), truncated to include the
first derivative terms. Then, in matrix form,

ith & @ -
with s &=,

ms - fé , imzsz - fn- sfn £y (E-T)

2, 2
imzs - m€| (Icg+ mz )8 + Toz - mn- sm: Jin
The determinant of this set of equations is a cubic
equation which can be written in the following
form
B.5°+B.3°+B.3+B = 0 (E-8)
3 2® TR1IPT 5 T

where 8 = s/w and the coefficients are functions of
the derivative coefficients defined in eq. (D-26)
and the following dimensionless parameters

-2 Ic
K* = =&
mi

T

z =2/t ; g = ‘2)

mw 4

the coefficients are:

B, = /g

B, = ’[Dﬁﬁﬂcﬁ'Dé)*(IZH_(z)Cé] (E-9)
B, = -| D +T(iC -1)+E(CE'D,',‘Dé Ay

B, = L +c D Cé_‘

A physical interpretation of the parameter
g is that it is equal to the ratio of the decelera-
tion of the vehicle to the centripetal acceleration
at a point near the tip of a rotor blade. The
derivative coefficients are functions of the follow-
ing rotor parameters

VT tip speed ratio
ﬁc coning angle
b/L flap hinge offset

mz‘) blade mass distribution

Thus, for the simplified system considered here,
vehicle stability is a function of seven param-
eters, | four of which are fixed for a given vehicle,
(b/t, K, Z and blade mass distribution) and three
of which depend on operating conditions (VT, ﬁ
and §).

For a given reentry trajectory VT » Be and
g can be determined at points along the trajectory,
producing curves of the roots of the stability equa-
tion as a function of time.
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For a blade with uniform spanwisc mass dis-
tribution and an aerodynamic chord that satisfies
the uniform coning angle assumption, eq. (C-1),
the tip speed ratio may be put into the following
forms

B _ cos ﬂc § 1/2
Vs z[gc-pA';; S, G Zcosﬂ )] (E-10)
1 i/2
b/{,+-—cosﬂ
V. =2[g- 2.om _ 2 ¢
VT_ U[:gL w m_ smB cosﬁ ] (E-11)

where A is the total area of the rotor (number of
blades times blade area), W is the total weight of
the vehicle and m, is the total mass of the rotor.
The first expression shows that, for a constant
coning angle trajectory, the tip speed ratio in-
creases as the square root of the density. The
second expression shows that maximum tip speed
occurs at maximum deceleration.

Under the same assumptions the deceleration
parameter is

m

- —;‘—:-sinﬁc cos Bc(% + % cos ﬁc)

(E-12)
Thus for a constant coning angle trajectory,
only the tip speed ratio depends on trajectory data
and a plot of stability vs. tip speed ratio may
easily be interpreted as a plot of stability vs. time.
The stability of a family of typical reentry
vehicles will be investigated. These vehicles will
have the same coning angle and will differ only
with regard to the rotor mass ratio, r/m. The
fixed parameters for these vehicles are
b/t = .05 ¥ = .25 K~ = .03, ﬁc = 10°
The following table gives the values of § and
the associated rotor mass ratios for which data
will be obtained

m
- r
E m
. 002 . 0216
004 . 0432
. 008 . 0863

Thus the weight of the rotor blades is
assumed to vary between 2. 0% and 8. 6% of the
total vehicle weight. The reasonableness of the
assumed coning angle will be checked by computing
the tip speed at maximum deceleration from eq.
(E-11). Assume ~r/m is .05, that the blade
length is 100 ft., and that the maximum decelera-
tion is 10 g's. Then

1

2

x3.16 ] =2850 ft/sec

1
Vo - Z[32.Zx100x10x:-3§

which is within the capability of high strength




materials. The axial velocity under these condi-
tions will be assumed to be 16, 000 ft/sec which is
about 2/3 of orbital velocity. Thus the tip speed

ratio is

V1 * o000 -
Since the tip speed ratio depends on atmospheric
density, eq. (E-10), the tip speed ratio will be
lower at higher altitudes and high at lower alti-

tudes. A range of tip speed ratios from . 075 to
. 600 has been selected for investigation.

The results are plotted in Figures lla, 11b
and llc for each of the three roots of the stability
equation. The magnitudes of the three roots are
roughly in the proportion 100/10/1.0. The med-
ium root is unstable and the small root is stable
for all conditions analyzed. The large root is un-
stable for the smaller values of Vp.

The wide separation in magnitude of the
three roots implies that each root may be evalu-
ated approximately from the ratio of successive
terms in the stability equation. The instability of
the large root for small VT may, by this means,
be traced to the negative value of the pitch damping
coefficient, Cyj, (see Figure 9d).

The force derivative of lateral velocity, Cg,
dominates the constant term, B,, in eq. (E-9), so
that the small root is closely associated with lat-
eral translational velcoity of the vehicle. This
root is very small and is stable, indicating that
lateral translation may be considered to be vir-
tually undamped.

The instability of the medium root is related
to the phase relationship between Cy and Ch'

It should be pointed out that one of the three
roots of a conventional hovering helicopter is
normally unstable but that the instability is accept-

able because the frequency and time to double am-
plitude (5-20 sec) are within the control capability
of the pilot. The instabilities indicated in Figure
11 are somewhat more severe. For example, if
the real part of the root is . 03, amplitude is
doubled every 3.7 revolutions. Thus, for a rotor
speed of 3.7 rev/sec, the amplitude is doubled in
one second.

Although such an instability is beyond the
capability of a human pilot, it seems quite prob-
able that an electronic autopilot could control an
instability of this order of severity. In addition it
is certain that other values of rotor parameters
can be found for which the instabilities are moder-
ated or eliminated entirely. The instability of the
high frequency root should be corrected in this
manner.

Another means of improving stability that may
prove to be effective is to add auxiliary aerody-
namic surfaces to the vehicle that will increase
the imaginary parts of Cp and Cj .

It seems likely, at this time, that, in view
of the wide range of operating parameters during
atmospheric entry, some form of black-box sta-
bilization will be necessary.
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Figure 1l1c. Small Root of Stability Equation

B =10°, P=.05, X=.25, ®=.03.
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APPENDIX |

in the Equation of Blade Motion (Eq. C-3)

The following special symbols are employed

5 14
P o
_ Zleo
Vt = v A speed ratio which is, for
a blade with uniform mass
distribution, equal to the
ratio of tip speed to axial
velocity.
Bz = (f—b)z =
b w -
bLOl
Lz (co-Bc +2 linﬂc tanﬁc)
02
- ‘iz
& = Voo N tanf_
10 "02
L
1
Yo * [ meds
b o
4
L., = L r ms ds
02 m,
b o
1 ot
LIO = — 1 mrds
™y Yo
2 1 ot
L“ =2 — | mrsds
mb ~°
A
43 = mrs ds
12 m
b "o
g2
L3 - i mr sds
21 m,
b o

The coefficients in eq. (C-3) are tabulated
below. Note that [HB] is a column matrix and
[Bn] is a row matrix,

2 -
[Hn] = rn.bw (H]
- =2
Hxx- 1-9
H, =%
Hx¢= 0

32

H¢9 =

. -2 .
"10 nnﬁc +{(1-p )LOI unﬂc
-2p - V tanf linzﬁ
P t c c

1 - 'ﬁz - Vti tanﬁc linzﬁc

thpnn 5c

“2P Ly sind, 2

—— . 11
- Vt lch tanﬂc (L_ +Db coaﬁc)
10
- L2
Vt b sin Bc

- . _ .2
thplmﬂc

=22

-p b -2 bco-zﬂc

10
V bz— .

A P amﬂc cosBc

- Lfl

V., bein8 (— + b cosf )
t c "10 [

Hﬂx

Heya

Hey =

Heg

(1-F2 e, sing,

2p LOl lmﬂc

0

2 -2
{:Loz (1-p)

2 .2
+ L“(l - co-ﬁc)] sin Bc

(1) = mbwzlinﬁc (H*)

H* =

L
*
"

H* =

L

*
[

"

"2P 4,

_2
(P - ey,

+ L°1(2 unﬁc -inac - cosﬂc)

2
+V - 5o tanB
- P
t LlO c
-F2bt, ctnd - 3bi, sing
P ol c 01
b ¢l
- 11
“ViP g
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2
-~ Lll
* = 29 _—t
B iyt T anB,
10
2 - Lil
* = (5°. B
B Y (P l){.ol + th "10 tanBc
2
2 - n
B, = -P bl . ctnf -V pb-—
[ 01 t 10

- 2
. .
B 6 = 2p "02 lxnﬂc

- L;I “iz
+ vt‘?,— + — -inﬂc tanﬁc)
10 10

B =

2.2 =2, =2 -
I -mbw Loz[1+p +wb+2cbp]

APPENDIX 11

Derivation of Hill's Rotary Transformation

Theorem

From Figure ] the forces and motions in the
stationary and rotating coordinate systems are re-
lated by

x [ cosy sin ] x
= ¢ (1I-1)
y - siny cos P ] y.
Fx. cos P -siny Fx
< = 1 4 (1I-2)
F siny cos P F
\ Y. — - L y P
Define -
T = x+iy F = F +iFy
* (11-3)
£=x.+1y. FSFX'+1FY.
Then
T = x (cosd-ising)
y . (I1-4)
+y'(-in$+ico-b) = fe ¢
and .
F = Fe¥ (11-5)

It is shown in Section D that, 8ue to the
symmetry of the rotor in axial flight, there exists
a complex transfer function such that

F = Fe) ¢ (11-6)

It is assumed that there exists a correspond-
ing transfer function when the variables are ex-
pressed in rotating coordinates

F = Fe(p) T (11-7)

Consider a homogeneous solution of the

equations of motion such that

£ = eo edt
and (11-8)

F:Fe‘n
o

where « is real or complex. Then from eq. (II-6)
and the properties of a linear derivative operator

F = Ff(a) Eo (11-9)

From eq. (lI-4), and ¥ = wt
T i (11-10)
“ 7. Fyle- iw)g el 1wt (I-11)

From eq, (II-5)

. at _ = . _
F s Fﬁ(a-xw)foe -Fe(a-lw) € (11-12)
so that comparing equations (1I-9) and (II-12)
Felo) = Fi(a' iw) (1I-13)
and the resultes expressed in eq. {D-6) follow.

In order to demonstrate the validity of eq.
(D-8), apply eq. (I1I-3) to the upper left gradient of
eq. (D-7), (omitting subscript (n))

F = (xx +1i Yx)x + (xy +1i Yy)y (II-14)
substitute 1 _
x =3 @+EW
5 (II-15)
y = 3 F-3%»
where T* = conjugate of ¢ .
- 1re  — —_ = .0
F =5|X +Y +iY_ -X)iE
2 [ x y x y s (11-16)

1= = ..o .= .=
+3 [xx Y T+ xy)];*



Eq. (II-16) applies to a single blade. Let the
advance angle of the jth blade with respect to the
T
reference azimuth be ., = —;‘L where n is the

number of blades.
given by eq. (II-8),

Then for a homogeneous input

£ - ¢ e(ar-imt:)-id)j

j 0
* _
€J. 3
Combining (II-5), (II-16) and (II-17), the force

on the hub in the stationary system due to a single
blade is

Lot iwt) + ib; (11-17)

[+}

1Ife .5 . .5 =.1.
=3 [xx +Y, 44T, - xy)] £,
pra-iw (11-18)
1l v .= = . (a+2iw)t+ 2ip;
+3 [xx-vy«» UY, + xy)] £ e j

Now if the blades are symmetrically ar-
ranged with respect to the hub

n

z 205 _ 0

j=1

for n2z 3

Hence with the exception of single-bladed and
two-bladed rotors, the net fore on the hub is:

- §[§x+?y +i(?x-iy):| £,

p=o-iw

(I1I-19)

and the result expressed in eq. (D-8) follows. For
one and two-bladed rotors it will be observed that,
for |al<<w, the additional terms in eq. (II-18) are
sinusoide with frequency approximately equal to
2w. Thue for low frequency calculations these

p=atiw additional terms have negligible influence.
APPENDIX 1l
Quantities Required in the Evaluation L 2
of Rotor Derivatives H¥+iH* = V --—tanﬁ +it (Ztanﬂ linﬁ -cooﬁ )
x Yy tLlo 01
For p = -il 2
bl
= " * - 11
I-{€€ = 0 H°+1Ha = l(c:tl‘)ﬂ 3linﬁ )= ZLozlinﬂ +1V ——Llo
LZ
- - 11 " .
Hfﬂ = V 4‘1 -inﬂctcnac-uloﬂnﬁc Bx iBY =0
*_in* L9 &
ﬁﬂ( .0 B° iBa = N’Ol ctnﬁc ZLoz linﬁc
V
- 3 2 2 2
Hﬂﬂ = -N°1COI ﬁc+dn -] [b 4-24!,()z [bl,“ -L umB tanﬁ]
2 2
+12(1-cosp )] sv—hnnp d ’“11
11 c —(H"‘+XH"') =iV tlnp
‘10 a5

d = - 2 2
-—(H,,) = -V _tanf8 sin" 8 be
ap ek t P c L 11 L, 2

dp(H¢+iHe) = V—¢10+i(2b4 ctnﬁc Zbozlinﬂc)
d = - 2
E-P-(Hfﬂ) = inblin ‘c . 2

d a» * 11

55 (BY-1B¥) » -1V, — tanp
d = < 2 dap ‘T x Yy "10 ¢
—dF (H”‘) L 1thlin ‘c Z
L (@ ) -V.bleind_cosd +i(2b2+2L 2 sin’ dp (Bg-1BQ) = -V, 7= H(ZbL c“"c'z"ozz“"“’c)
dF "'m t c o, o2*n A o
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